C# classes

Lecture 7

CS 638 Web Programming

&

Lecture overview W

o Organization: namespaces and assemblies
a Class members — fields, methods, properties
o Access modifiers (protection levels)
o Static versus instance
a Inheritance
a Polymorphism, overriding methods
o Value and reference types
o Parameter passing

CS 638 Web Programming — Estan & Kivolowitz

C# namespaces @

0 Used to avoid name conflicts (many classes with same name)
a Potential for name conflicts much higher in large projects or
projects using many external libraries
a Every class has to be inside a namespace
o Namespaces can be nested
o Classes from the vast library offered by the .NET framework
structured in vast hierarchy of namespaces
o Namespaces orthogonal to the structure of the source code
o There can be multiple namespaces in a single source file, a
namespace can span multiple source files
0 The “using somenamespace;” directive gives he convenience
of not having to use fully qualified names for all classes
a May lead to name conflicts, compiler detects ambiguities

CS 638 Web Programming — Estan & Kivolowitz

Some standard namespaces @

o System contains classes that implement basic
functionalities like mathematical operations, data
conversions etc.

o System.lO contains classes used for file 1/0
operations.

o System.Collections.Generic contains classes that
implement collections of objects such as lists,
hashtable etc. using C# generics

0 System.Text contains classes that manipulate
strings and text

o System.Diagnostics contains classes used in
profiling and debugging your application

CS 638 Web Programming — Estan & Kivolowitz

The structure of applications @

o Each C# project is compiled to an assembly

a Can be an executable file or a dynamic link library
(DLL) containing the MSIL code

o Assemblies also contain a lot of useful metadata
(e.g. version number)

o Can use classes from an external assembly
by adding a reference to it in your project

o Must add explicit references to other projects
within solution to use the classes defined there

o Classes loaded when used

CS 638 Web Programming — Estan & Kivolowitz

Lecture overview @

a Organization: namespaces and assemblies
a Class members — fields, methods, properties
o Access modifiers (protection levels)
0 Static versus instance
a Inheritance
a Polymorphism, overriding methods
o Value and reference types
o Parameter passing

CS 638 Web Programming — Estan & Kivolowitz




Classes @

0 At the heart of object oriented programming
o Application structure mirrors real world objects
0 Related methods and data encapsulated in object
0 Objects with the same structure are of same type
0 A class is a blueprint for all things of that type
0 Instance of a class is a thing, an object
0 Classes have three main types of members
o Methods (functions in other languages)
o Fields (the data, sometimes called member variables)
a Properties (accessed like fields, but actually methods)

CS 638 Web Programming — Estan & Kivolowitz

Example of class and object @

public class LClass
{
H

Lilass allass = new LAClass|():

CS 638 Web Programming — Estan & Kivolowitz

Fields @

a Syntax for declaring fields similar to that for
local variables
o Typically fields are not “public”
a Public fields
0 break data encapsulation
o cause loss of control of the class
0 easier for the lazy or hurried
0 Use properties for public faces to internal
variables (can also make them read-only)

CS 638 Web Programming — Estan & Kivolowitz

C# properties and accessors @

o A property looks just like a field outside the class
o Just like a field, a property has a type associated with it

o Accessors are methods for reading or writing the
property — each field may have get and set accessor
o Class author writes body of accessors
0 get accessor must return value of same type as property
0 set accessor receives implicit parameter “value”

o By controlling the protection level of the accessors
(or omitting one of them) the class author can
control who can read and who can write property

CS 638 Web Programming — Estan & Kivolowitz

Property & accessor example @

class

/aTE N AZcesaCounTer:
int updatecounter;
int theThing:

"

at thing |

ger
ACCESSCOUNtaT

rerurn theThing:

theThing = valus:

public woid PrintStats() ¢

SUriteline ("Husber of accesses 4 accessCounter + ", nisber of off

CS 638 Web Programming — Estan & Kivolowitz

Access modifiers (protection @
levels for class members)

o Class members and classes can have one of the
following protection levels
o public — accessible to everyone
0 private — accessible only inside class
0 protected — accessible for descendants
0 internal — accessible within the same assembly
o Default protection levels
o Class members, struct members — private
o Classes, structs, enums — internal
o Enum members, interface members — public

CS 638 Web Programming — Estan & Kivolowitz




Methods @

o Must exist in a surrounding class or struct
a They have access to private members of the class
a Typically they are public
0 “Global” methods done as static public methods

o Each method has name, return type, and O or more
typed arguments
o The void return type indicates that the method does not

return anything

o Overloading: two methods can have the same
name, but differ in number or type of the arguments
a The various overloaded methods have separate bodies

CS 638 Web Programming — Estan & Kivolowitz

Method overloading example @

class Program
{
static void Main(string[] args)
<
LooklUpPerson ||

Y. [®1cf2% void Frogram.LookLipPerson (string socialSecurityNumber)]

static private void LookUpPerson(string firstMName, string lastName)
{

Console.WriteLine ("Looking up by first and last name.”);
¥

static private void LookUpPerson{string socialSecurityNumber)
<

Console.WriteLine ("Looking up by social security mmber.”):
+

CS 638 Web Programming — Estan & Kivolowitz

Constructors @

o Constructors are special methods
0 same name as class
a no return type
o used for initialization of a class instance
a may be overloaded

o If no constructor specified, compiler
generates one that initializes members to
default values

CS 638 Web Programming — Estan & Kivolowitz

Static versus instance @

o All instances of a class share certain traits — but
have individual copies
o Rexx and Fido are Dogs but have different names
o Name is a trait shared by all instances of the class Dog but
each instance of Dog has its own copy
o This is the default
o A trait present in all instances of a class and
physically shared by all instances is a “static” trait
o Can be methods or fields
a Must be fully named using enclosing class

CS 638 Web Programming — Estan & Kivolowitz

The “this” keyword @

o Refers to the current instance (the object whose
method is executed)

o Used to qualify access to members of the current
instance

o Typically used for disambiguating a member
variable from a method parameter of the same
name

o Cannot be used in static methods

o Cannot be used to qualify access to static methods
a Use class name instead

CS 638 Web Programming — Estan & Kivolowitz

Other qualifiers for fields @

o const
a Compile time constant

0 readonly
a May be initialized at compile time or in a constructor

o Neither can be changed after its value has been
initialized

o Use them when they apply — they help find some
bugs (and they give the compiler more opportunities
to optimize the code)

CS 638 Web Programming — Estan & Kivolowitz




Lecture overview @

o Organization: namespaces and assemblies
o Class members — fields, methods, properties
o Access modifiers (protection levels)
o Static versus instance
a Inheritance
a Polymorphism, overriding methods
o Value and reference types
a Parameter passing

CS 638 Web Programming — Estan & Kivolowitz

Inheritance @

public class Mammal
{
public string neme = "";
static public readonly string status = "OK";

public Mamwmal (string name)
{
this.name = name;
¥
'

public class Dog @ Mammal

{
public Dogistring name] @ base (name)
{
¥

CS 638 Web Programming — Estan & Kivolowitz

Why use inheritance? @

a Code reuse
o The derived class has all members of the base class
a Polymorphism

a An object belonging to the derived class can be used
where the program expects an object from the base class

o Some methods of the derived class may behave differently
than the same methods in base class

a Methods in different derived classes may differ

a Polymorphism means that at run time the environment
picks the method to run based on actual type of object

CS 638 Web Programming — Estan & Kivolowitz

Polymorphic virtual methods @

0 In base class, use keyword “virtual” for methods
you want to behave in a polymorphic way

Q In derived class, use keyword “override” for methods
that implement polymorphic behavior
o Can use the “base.method ()” syntax to call the

named method in the base class

0 Use keyword “abstract” for polymorphic methods for
which the base class does not define a body
o If any method in class abstract, class must be abstract
o Non-abstract derived class overrides abstract methods
o Abstract classes cannot be instantiated

CS 638 Web Programming — Estan & Kivolowitz

Non-polymorphic methods @

o By default methods are not polymorphic

o Derived classes may re-define such methods
using the “new” keyword

o Demo shows difference between the
behavior of the two types of methods

CS 638 Web Programming — Estan & Kivolowitz

Lecture overview @

a Organization: namespaces and assemblies
a Class members — fields, methods, properties
o Access modifiers (protection levels)
0 Static versus instance
a Inheritance
a Polymorphism, overriding methods
o Value and reference types
o Parameter passing

CS 638 Web Programming — Estan & Kivolowitz




Value and reference types @

o Value types (ints, doubles, chars, structs)

o Variables of value types directly contain their data
o Reference types (strings, objects)

o Variables of reference types store references

a Two variables may point to the same object

o The “new” operator used to create an object

a Objects stored on heap and when there are no
more live references to them they are discarded
by the automatic garbage collector

CS 638 Web Programming — Estan & Kivolowitz

All types descend from object @

o All value and reference types are derived (indirectly
or directly) from the object class
0 object has 4 methods methods
0 object.Equals (object other)
0 object.GetType ()
0 object.ToString ()
0 object.GetHashCode ()
int x = 1;
x.ToString () > “1”
1.ToString() > “1”

CS 638 Web Programming — Estan & Kivolowitz

Parameters @

a All parameters passed by value by default

o To pass by reference use “ref” keyword

a Changes to the parameter inside method
visible after it returns

o To return more than one result, use “out”
keyword

a “ref” and “out” must be present in both
method definition and method invocation

CS 638 Web Programming — Estan & Kivolowitz




